105 research outputs found

    The longitudinal changes of BOLD response and cerebral hemodynamics from acute to subacute stroke. A fMRI and TCD study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>By mapping the dynamics of brain reorganization, functional magnetic resonance imaging MRI (fMRI) has allowed for significant progress in understanding cerebral plasticity phenomena after a stroke. However, cerebro-vascular diseases can affect blood oxygen level dependent (BOLD) signal. Cerebral autoregulation is a primary function of cerebral hemodynamics, which allows to maintain a relatively constant blood flow despite changes in arterial blood pressure and perfusion pressure. Cerebral autoregulation is reported to become less effective in the early phases post-stroke.</p> <p>This study investigated whether any impairment of cerebral hemodynamics that occurs during the acute and the subacute phases of ischemic stroke is related to changes in BOLD response.</p> <p>We enrolled six aphasic patients affected by acute stroke. All patients underwent a Transcranial Doppler to assess cerebral autoregulation (Mx index) and fMRI to evaluate the amplitude and the peak latency (time to peak-TTP) of BOLD response in the acute (i.e., within four days of stroke occurrence) and the subacute (i.e., between five and twelve days after stroke onset) stroke phases.</p> <p>Results</p> <p>As patients advanced from the acute to subacute stroke phase, the affected hemisphere presented a BOLD TTP increase (p = 0.04) and a deterioration of cerebral autoregulation (Mx index increase, p = 0.046). A similar but not significant trend was observed also in the unaffected hemisphere. When the two hemispheres were grouped together, BOLD TTP delay was significantly related to worsening cerebral autoregulation (Mx index increase) (Spearman's rho = 0.734; p = 0.01).</p> <p>Conclusions</p> <p>The hemodynamic response function subtending BOLD signal may present a delay in peak latency that arises as patients advance from the acute to the subacute stroke phase. This delay is related to the deterioration of cerebral hemodynamics. These findings suggest that remodeling the fMRI hemodynamic response function in the different phases of stroke may optimize the detection of BOLD signal changes.</p

    No Language-Specific Activation during Linguistic Processing of Observed Actions

    Get PDF
    It has been suggested that cortical neural systems for language evolved from motor cortical systems, in particular from those fronto-parietal systems responding also to action observation. While previous studies have shown shared cortical systems for action--or action observation--and language, they did not address the question of whether linguistic processing of visual stimuli occurs only within a subset of fronto-parietal areas responding to action observation. If this is true, the hypothesis that language evolved from fronto-parietal systems matching action execution and action observation would be strongly reinforced.We used functional magnetic resonance imaging (fMRI) while subjects watched video stimuli of hand-object-interactions and control photo stimuli of the objects and performed linguistic (conceptual and phonological), and perceptual tasks. Since stimuli were identical for linguistic and perceptual tasks, differential activations had to be related to task demands. The results revealed that the linguistic tasks activated left inferior frontal areas that were subsets of a large bilateral fronto-parietal network activated during action perception. Not a single cortical area demonstrated exclusive--or even simply higher--activation for the linguistic tasks compared to the action perception task.These results show that linguistic tasks do not only share common neural representations but essentially activate a subset of the action observation network if identical stimuli are used. Our findings strongly support the evolutionary hypothesis that fronto-parietal systems matching action execution and observation were co-opted for language, a process known as exaptation

    Comparing unilateral and bilateral upper limb training: The ULTRA-stroke program design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>About 80% of all stroke survivors have an upper limb paresis immediately after stroke, only about a third of whom (30 to 40%) regain some dexterity within six months following conventional treatment programs. Of late, however, two recently developed interventions - constraint-induced movement therapy (CIMT) and bilateral arm training with rhythmic auditory cueing (BATRAC) - have shown promising results in the treatment of upper limb paresis in chronic stroke patients. The ULTRA-stroke (acronym for Upper Limb TRaining After stroke) program was conceived to assess the effectiveness of these interventions in subacute stroke patients and to examine how the observed changes in sensori-motor functioning relate to changes in stroke recovery mechanisms associated with peripheral stiffness, interlimb interactions, and cortical inter- and intrahemispheric networks. The present paper describes the design of this single-blinded randomized clinical trial (RCT), which has recently started and will take several years to complete.</p> <p>Methods/Design</p> <p>Sixty patients with a first ever stroke will be recruited. Patients will be stratified in terms of their remaining motor ability at the distal part of the arm (i.e., wrist and finger movements) and randomized over three intervention groups receiving modified CIMT, modified BATRAC, or an equally intensive (i.e., dose-matched) conventional treatment program for 6 weeks. Primary outcome variable is the score on the Action Research Arm test (ARAT), which will be assessed before, directly after, and 6 weeks after the intervention. During those test sessions all patients will also undergo measurements aimed at investigating the associated recovery mechanisms using haptic robots and magneto-encephalography (MEG).</p> <p>Discussion</p> <p>ULTRA-stroke is a 3-year translational research program which aims (1) to assess the relative effectiveness of the three interventions, on a group level but also as a function of patient characteristics, and (2) to delineate the functional and neurophysiological changes that are induced by those interventions.</p> <p>The outcome on the ARAT together with information about changes in the associated mechanisms will provide a better understanding of how specific therapies influence neurobiological changes, and which post-stroke conditions lend themselves to specific treatments.</p> <p>Trial Registration</p> <p>The ULTRA-stroke program is registered at the Netherlands Trial Register (NTR, <url>http://www.trialregister.nl</url>, number NTR1665).</p

    The Effect of Irrigation Intervals and Arbuscular Mycorrhizal Fungi on Chlorophyll Index, Yield and Yield Components of Grain Sorghum

    No full text
    This experiment was carried out to study the effect of irrigation intervals and arbuscular mycorrhizal fungi on chlorophyll index, yield and yield components of grain sorghum. A factorial experiment was done based on randomized complete block design (RCBD) with three replications at the Agriculture Research Station faculty of Agriculture, Bu- Ali Sina University in growing season of 2011. Irrigation intervals (7, 14 and 21 days) with three levels of seed inoculation (control without inoculation, inoculation with Glomus mossea and inoculation with G. intraradices) were the experimental treatments. Results indicated that the effect of irrigation intervals and mycorrhizal fungi were significant for traits of chlorophyll index, percentage of root symbiosis (PRS), number of grain per panicle, 1000 seed weight, grain yield and harvest index (HI). Maximum value for each trait was observed at G. mossea treatment. G. mossea treatment in comparison with G. intraradices and control treatment can increase the grain yield of sorghum up to 6.80 and 23.10%, respectively. Also, with increasing irrigation interval from 7 to 21 days, PRS increased up to 27.9%. Maximum value for grain yield (755 g m-2) was achieved at irrigation every 14 days and application of G. mossea treatment. But, there was no significant difference between irrigation sorghum plants every 14 days and application of G. mossea and irrigation every 7 days and application of either G. mossea or G. intraradices. In general, irrigation of sorghum plants every 14 days and supplying of G. mossea can produce the highest grain yield, while decreasing water consumption for sorghum production

    SPATIAL QUERIES ENTITY RECOGNITION AND DISAMBIGUATION USING RULE-BASED APPROACH

    No full text
    In the digital world, search engines have been proposed as one of challenging research areas. One of the main issues in search engines studies is query processing, which its aim is to understand user’s needs. If unsuitable spatial query processing approach is employed, the results will be associated with high degree of ambiguity. To evade such degree of ambiguity, in this paper we present a new algorithm which depends on rule-based systems to process queries. Our algorithm is implemented in the three basic steps including: deductively iterative splitting the query; finding candidates for the location names, the location types and spatial relationships; and finally checking the relationships logically and conceptually using a rule based system. As we finally present in the paper using our proposed method have two major advantages: the search engines can provide the capability of spatial analysis based on the specific process and secondly because of its disambiguation technique, user reaches the more desirable result

    TAGS EXTARCTION FROM SPATIAL DOCUMENTS IN SEARCH ENGINES

    No full text
    Nowadays the selective access to information on the Web is provided by search engines, but in the cases which the data includes spatial information the search task becomes more complex and search engines require special capabilities. The purpose of this study is to extract the information which lies in spatial documents. To that end, we implement and evaluate information extraction from GML documents and a retrieval method in an integrated approach. Our proposed system consists of three components: crawler, database and user interface. In crawler component, GML documents are discovered and their text is parsed for information extraction; storage. The database component is responsible for indexing of information which is collected by crawlers. Finally the user interface component provides the interaction between system and user. We have implemented this system as a pilot system on an Application Server as a simulation of Web. Our system as a spatial search engine provided searching capability throughout the GML documents and thus an important step to improve the efficiency of search engines has been taken

    Effect of Phosphate Solubilizer Biofertilizer and Phosphorus Fertilizer on Response of Agronomic Traits, Yield and Yield Components of Pumpkin (Cucurbita pepo L.)

    No full text
    This research was carried out to investigate the response of agronomic traits, yield and yield components of pumpkin (Cucurbita pepo L.) to phosphate solubilizer biofertilizer at different levels of phosphorus (P) fertilizer. The experiment was factorial, based on randomized complete blocks design with three replications. Treatments included two levels of phosphate solubilizer biofertilizer (inoculation of seeds and non-inoculation) and P fertilizer at four levels (25, 50, 75 and 100% of recommended level based on soil test), which were performed at Educational and Research Farm of Bu-Ali Sina University, Hamadan, Iran, in 2011. Results of the flowering stage showed that application of 75% P fertilizer produced maximum number of leaves per plant (21.86), leaf dry weight (27.75 g/plant) and plant dry weight (49.66 g). At the stage of fruit production, maximum number of branches and leaf dry weight per plant were achieved in inoculation treatment. With increasing P fertilizer application, the number of fruits per plant was increased. Application of P fertilizer up to 50% of recommended level along with using biofertilizer increased seed yield. This result could be due to increased efficiency of bacteria, which dissolve phosphate in lower rates of P fertilizer

    J Comp Neurol

    No full text
    Although the concept of left-hemispheric lateralization of neural processes during speech production has been known since the times of Broca, its physiological underpinnings still remain elusive. We sought to assess the modulatory influences of a major neurotransmitter, dopamine, on hemispheric lateralization during real-life speaking using a multimodal analysis of functional MRI, intracranial EEG recordings, and large-scale neural population simulations based on diffusion-weighted MRI. We demonstrate that speech-induced phasic dopamine release into the dorsal striatum and speech motor cortex exerts direct modulation of neuronal activity in these regions and drives left-hemispheric lateralization of speech production network. Dopamine-induced lateralization of functional activity and networks during speaking is not dependent on lateralization of structural nigro-striatal and nigro-motocortical pathways. Our findings provide the first mechanistic explanation for left-hemispheric lateralization of human speech that is due to left-lateralized dopaminergic modulation of brain activity and functional networks. This article is protected by copyright. All rights reserved
    • …
    corecore